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Executive Summary:

Main drivers of fee rate are V
(transaction amount) + and
CPFP (child pays for parent) -

Several other variables are
correlated with fee rate

We choose to use a structural
model in order to recover the
true drivers by eliminating
confounders
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-Motivation

The driving factors and significance of the research.




The Block Reward Has Two Components, l l
But One is Programmed to Disappear.

The reward consists of two sources:
1. Coinbase Subsidy: A fixed amount of newly minted BTC, set by the protocol.
2. Transaction Fees: Voluntary fees paid by users to have their transactions included in a block.

Historically, the coinbase subsidy has comprised the vast majority of the reward. From 2022-2024, it
accounted for approximately 95%.
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To Maintain Security, Bitcoin’s Price Must Grow |
Exponentially—An Unsustainable Path

The Required Price Path to Offset the Halving
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If the BTC-denominated coinbase subsidy halves every four years, the USD price of Bitcoin must double in the same
period just to keep the miners’ revenue (and thus network security) constant. This implies a required annual growth
rate of ~25%, a rate that exceeds historical trends and is dynamically impossible for any asset to sustain in the long term

This raises the critical question for Bitcoin’s future viability: Will transaction fees rise to fill the ever-widening gap?



Data Sources
and First Looks

An overview of the data collection and initial analysis.




The model is Estimated on Granular, High-Frequency data from II
a Dedicated Bitcoin Node

Data Source & Structure Implementation Details

We operated a custom Bitcoin Node The entire pipeline is available on Github
from August to December 2025 to collect

high-fidelity mempool and blockchain Data Sourced

data tx_id, tx_data, child_txid,
conf_block hash, found_at,
Data Structure mined_at, rbf fee_total,
e The timeline was partitioned into min_respend_blocks, absolute fee,
epochs of 30 minutes fee rate, version,
e For each transaction, we measured seen_in_mempool, waittime,
fee, mempool density, waittime, weight, size, total _output _amount,
UTXO value, re-spend time, etc mempool_size, mempool_tx_count,

output_weights
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tx_count

Avg mempool

Block-level mempool tx count over time (ordered by first_seen)
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Methodology

Implementation of a two-stage structural model.



I N
We Model the Fee Market as a Queue Where II I
Impatient Users Pay to Cut the Line.

e Our approach is built on the economic
model of Huberman et al. (2021).

Mempool (Waiting Room)

e Miners, as profit-maximizers, prioritize
transactions with the highest fees.

o Transactors differ in their “impatience”
or time-cost. They select a fee to secure
a desired spot in the queue of pending
transactions (the mempool).

e The resulting fee is therefore a function
of network congestion and the
distribution of impatience among all
users.




The Challenge: How Can We Empirically
Measure a User’s ‘Impatience’?

Transactor's
Impatience (c)

Estimating the model requires a data-driven measure of impatience. This presents a core
difficulty, as impatience (a user's "time-cost") is an unobservable internal state of mind.
We need a clever, empirical proxy to extract this preference from on-chain data.

KLM
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The Breakthrough: Using ‘Re-Spend Time’ as a Proxy for Impatience

» We borrow an ingenious insight from Mdser & Bohme (2015).

» We hypothesize that the time it takes for a transaction’s output (UTXO) to be spent again is
correlated with the original sender’s urgency.

« A fast re-spend implies high impatience; a slow re-spend implies low impatience. The inverse
of the re-spend time becomes our empirical proxy.

Measuring Impatience via Re-Spend Time

T=0: Alice sends Transaction T+n: Bob re-spends
UTXO to Bob confirmed in block the UTXO
‘ Enters mempool l i ‘
L& J 9 J
Y Y
Confirmation Time (W;;) Re-spend Time (d;;)
[ ¢ 14

. Our proxy for Alice’s impatience is d;; )




Fee (satoshis)

8000

6000

2000

5000

10000

15000

20000 25000
Wait Time (seconds)

30000

35000




Frequency

le6

Distribution of Blocks to Respend (0-20 blocks)

1.4

1.2

1.0

o
(o]
1

o
(=)}
1

0.4

0.2

0.0 -

8 10 12 14 16
Blocks to Respend

18

20




B
Il

A Random Forest Regressor for Wait Time
Prediction

Our model uses a Random Forest Regressor to predict the log-transformed wait time
(log_waittime) based on four key log-transformed and binary features.

Model Overview: Features & Target (Log-Transformed):
Predicted to Target (y): log_waittime (Log of Transaction
3 4 predicted value Wait Time)
Features (X):

An ensemble learning method that constructs
a multitude of decision trees at training time. It
outputs the average prediction of the individual
trees, reducing overfitting and improving
accuracy.

e log_rho_t (Log of Network Congestion)

e log_time_cost (Log of Impatience Proxy)
» has_child (Binary: Has Child Transaction)
« rbf_flag (Binary: Replace-By-Fee Flag)
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Actual vs Predicted Distribution (RF Model) - Extended Range Confusion Matrix (Row-normalized %) - Extended Bins I I I I I
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Rationale I I

e \We use the first stage estimation to eliminate the influence of
fees in waittime

e \We do this by choosing variables that are not plausibly
influenced by fees (congestion, time cost, CPFP)

e This proxy is then used as a variable in our second stage fee
model




Rationale I I

e We use the first stage estimation to eliminate the influence of
fees in waittime

e We do this by choosing variables that are not plausibly
influenced by fees (congestion, time cost, CPFP)

e This proxy is then used as a variable in our second stage fee

mOd el First Stage

Estimation -@w

‘? e Cost |
] Time Cost

CPFP
Eliminate fee influence Choose variables not Proxy used as variable
in waittime. influenced by fees. in final model.

Waittime
(Raw)

Second Stage

Clean Signal Fee Model

(Proxy)
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This Leads to Our Structural Model for Estimating Transaction Fees.
Our model empirically realizes the theory, expressing the transaction fee as a function of congestion,

the aggregate impatience of other users, and other key transaction characteristics. The model is
log-linear to reflect the “fat tail” distribution of fees.

The Fee. The Mempool Congestion. The average number
transaction fee (in USD) of transactions in the mempool during the
that we aim to predict. epoch. How crowded is the waiting room?
bit — al +C¥2pt+ L2 2 v M - I +- ...+€it
The Impatience Premium. This core Control Variables. We control for
term aggregates the effect of all more- transaction value, weight (size),
impatient users ahead in the queue, exchange activity, and other factors.

based on our re-spend time proxy.
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Feature Correlations with Fee Rate I I
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(All Model Features + Fee Rate)
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Bitcoin Fee Estimation: A Structural Model Approach
Model 1: Huber Robust Regression Analysis

Model Performance Metrics Top 10 Feature Coefficients (Standardized)

Positive Correlation (Green)

Metric Training Set Test Set has_child ‘K :,_,J," B Negative Correlation (Red)
log_V_it 0.1758
R? (R-squared) 0.3067 0.3080 =
log_time_cost_quantile - 0.0784
MAE (Mean Absolute Error) 0.44 0.44
log_blockspace_t 1 0.0782
Median AE (Median Absolute Error) 0.36 0.36
( ) log_W_hat - 0.0647 !
RMSE (Root Mean Squared Error) 0.59 0.59 log_riemann_sum1 0.0439

log_weight - -0.0430 -
i'> rbf_flag- -0.0151 I

Outliers Down-weighted log_rho_t1 -o.oos7ﬂ

1,291,475 (32.3%) Vit 0,008
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Bitcoin Fee Estimation: A Structural Model Approacl-l il

Model 2: Quantile Regression Analysis

Model Performance Metrics

Median Regression (50th percentile)

Metric Training Set  Test Set
Pseudo-R? 0.1029 0.1038
MAE 1.93 1.96
Median AE 0.91 0.90

90th Percentile Regression (upper tail)

Metric Test Set (90th percentile)
Pseudo-R? 0.0793
MAE 4.14

Using 10,000 samples for quantile regression (computational efficiency)

Coefficient Comparison: Median vs 90th Percentile

has_child -
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Bitcoin Fee Estimation: A Structural Model Approach I ! I 1
Model 3: Spline Regression (Segmented)

Model Configuration & Features
il Using: 50,000 samples for Spline Regression

" Spline features (non-linear): ['log_rho_t', 'log_V_it',

'log_W_hat', 'log_blockspace_t]

~/ Linear features: [log_weight', 'log_riemann_sum,
'log_time_cost_quantile', 'has_child', 'rbf_flag’, 'V_it']

4> Spline configuration:
» Knots: 30 (creates 29 segments)
 Degree: 3 (cubic splines)

~» Features per spline variable: 32

.J Fitting spline regression model (log1p target)...

Model Performance Metrics

Metric Training Set Test Set
R? = -0.0298 -0.0561
MAE =g 2.99 2.99
Median AE ~ mw 1.89 1.89
RMSE .= 5.52 5.47

Feature Transformation Summary

Total features after spline transformation: 130
» Spline-derived features: 124
* Linear features: 6

Spline Feature Importance (sum of |coefficients])

splines_block

has_child

V_it

log_weight

rbf_flag

log_riemann_sum

log_time_cost_quantile

16.8912
Spline

0.2379
Linear

0.1308
Linear

0.0942
Linear

0.0374
Linear

0.0273
Linear

0.0237
Linear




Spline Regression: Actual vs Predicted

Spline Regression: Transaction Count per Fee Rate Bin (Color = Transaction Density)
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Bitcoin Fee Estimation: A Structural Model ApproacL I"

Spline Regression: Fee Rate Distribution Summary

Fee Rate Distribution Statistics Transaction Count by Fee Rate Bracket
Metric Actual Predicted m Actual
(Spline) 452,691 450,055 Bl Predicted (Spline)

! . 288,414

Total 1,000,789 -

Transactions:

Mean (sat/vB):  3.09 4.56

Median 2.00 3.96

(sat/vB):

Std Dev 5.32 3.02

(sat/vB):

0-1 1-2 2-5 5-10 10-20  20-100

sat/vB sat/vB sat/vB sat/vB sat/vB sat/vB



Bitcoin Fee Prediction: Scenario Analysis |
Based on Input Parameters (Model 3: Spline Regression)

Scenario 1: Lower Mempool Density

INPUTS PREDICTED FEE (sat/vB)
¥ rho_t 8,000

&% blockspace_t  0.3500 ‘j> 2 0992
S Vit 200,000 o

& has_child No (0) x ~ pred_fee_spline_sat_vB
> rbf_flag Yes (1) v

Scenario 2: Higher Mempool Density

INPUTS PREDICTED FEE (sat/vB)
- rho_t 60,000

W@ blockspace_t  0.8500 : 1 2 01 5
e Vit 5,000,000 ®

& has_child Yes (1) v e pred_fee_spline_sat_vB

= rbf_flag No (0) x



Predicted Fee Rate (sat/vB)

High Congestion: Actual vs Predicted

(R2 = 0.1290)
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SUMMARY: F-STATISTICS

LINEAR MODEL F-STATISTICS

log_V_it: 19505.97 (***)

has_child: 16780.39 (***)

log_rho_t: 5625.70 (***)
log_blockspace_t: 1173.33 (***)
log_time_cost_quantile: 657.31 (***)
log_W_hat: 580.18 (***)

rbf_flag: 104.35 (***)

log_riemann_sum: 89.73 (***)

NONLINEARITY?

YES (R2 Gain: 0.13%)
N/A (binary)

_} YES (R2 Gain: 0.66%)
YES (R2 Gain: 0.17%)
YES (R2 Gain: 0.02%)

7 YES (R2 Gain: 0.15%)

%

N/A (binary)
YES (R2 Gain: 0.05%)

H
i
SPLINE MODEL F-STATISTICS

log_V_it: 95.70 (***)

has_child: N/A

log_rho_t: 475.86 (***)
log_blockspace_t: 123.70 (***)
log_time_cost_quantile: 12.90 (***)
log_W_hat: 106.83 (***)

rbf_flag: N/A

log_riemann_sum: 33.08 (***)

*»** n < 0.001
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> Summary and
= Conclusions



THE GOOD: FOUND THE SIGNAL IIIII

F-statistics are massive for the top features. This confirms
that these variables are definitely drivers of fee rates.

log_V_it and has_child are the kings.
They are 10x more important than
almost anything else.

F=20,850

log_V_it (Transaction Amount)

F=19,078

has_child (CPFP Chains)

THE TAKEAWAY:
Transaction Amount and CPFP (Child-Pays-For-Parent)
chains are the primary drivers of fees.



I o
KEY TAKEAWAYS: I il

Modeling BTC fees Machine Learning Mempool congestion
is hard (power law) Models would be better hardly affects fee .
rate at all '
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